If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+20Y+9
We move all terms to the left:
-(-16Y^2+20Y+9)=0
We get rid of parentheses
16Y^2-20Y-9=0
a = 16; b = -20; c = -9;
Δ = b2-4ac
Δ = -202-4·16·(-9)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{61}}{2*16}=\frac{20-4\sqrt{61}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{61}}{2*16}=\frac{20+4\sqrt{61}}{32} $
| 3-d=9 | | 2x-5=19-6x;x=3 | | x+9=18+2-2x | | 25+(8x-4)=45 | | x–7= | | a+(-12)=-5.5 | | 4v=18+v | | 22-(4+8x)=38 | | -66=-4x+2(-x-9) | | 12x-(5-3x)=0 | | x=523 | | -3x-2(2x+13)=-103 | | 5x-6(2x-10)=95 | | -6x+2(-7x-13)=-126 | | -5x-4(-x-7)=21 | | 4x+5(x-19)=-50 | | -5x-2(6x-16)=151 | | 172=4x+2(6x+6) | | 3x+29x=17 | | 4x-6(-4x+10)=164 | | 5x+4(6x+5)=-212 | | 6x+4(6x+5)=-212 | | 15x+13=7x+7 | | 11-(3-2x)=(-1) | | .05+.75x=3.75 | | 12g=12((2/3)g−1)+11 | | 6x+6=7x+17 | | 40x+20x=80+20x | | 6(x+3)=13=85 | | 8x-5x=x+14 | | 3x-2x-8+4=36 | | 8(x+6)=73 |